RESEARCH

"always enjoy researching"

SOLUTION-PROCESSED 2D MOLECULAR SINGLE-CRYSTALLINE SEMICONDUCTORS

By virtue of their unique characteristics such as light weight, high tunability, and adaptivity, two-dimensional (2D) molecular semiconductors have received great attentions for their graphene-like topological features and emerging properties. In particular, soluble organic semiconductors can be used to achieve low-cost and high-throughput manufacturing of solution-processed electronic devices. We propose a novel strategy for a rapid solution coating of 2D molecular single-crystalline semiconductors. We used a “floating” coffee-ring effect for the crystallization of molecules into 2D films at a high crystal growth rate. Field-effect transistors yielded a record-high carrier mobility. Moreover, we demonstrate that our method can be applicable to the formation of 2D crystalline films using other soluble materials.

FERROELECTRIC OFETS

We propose innovative ideas to make breakthroughs in the field of ferroelectric organic field-effect transistors. So far, the electrical performance of our Fe-OFET devices possess the highest record.

SOLUTION-PROCESSED ORGANIC CRYSTALS: TECHNIQUES AND MECHANISM STUDY

We develop a novel method, that is solvent-vapor annealing, for the fabrication of organic semiconducting crystals. Polycrystalline thin film deposited using spin-coating from polymer/semiconductor blend can change into organic single crystals after solvent-vapor annealing. We also study the mechanism of organic crystals growth via our method.

PATTERNING TECHNOLOGY FOR

ORGANIC CRYSTALS FETS

Our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences.

PHYSICS OF ORGANIC MATERIALS & DEVICES

We fabricate organic devices under different conditions, evaluate the electrical performance, and investigate the charge transport behaviors and contact resistance etc. Thus, we provide deep understanding towards the basic physics of semiconducting materials and devices, aiming at the achievement of high-performance, multifunctional electronics using organic materials.

OTHER RESEARCH TOPICS

  1. 2D ferroelectric polymers.

  2. quantum capacitance effect of 2D organic materials.

© COPYRIGHT @YUN LI GROUP